Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Biochem Biotechnol ; 196(3): 1399-1418, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37410352

RESUMEN

The pentaspan transmembrane glycoprotein CD133, prominin-1, is expressed in cancer stem cells in many tumors and is promising as a novel target for the delivery of cytotoxic drugs to cancer-initiating cells. In this study, we prepared a mouse library of single-chain variable fragment (scFv) antibodies using mRNAs isolated from mice immunized with the third extracellular domain of a recombinant CD133 (D-EC3). First, the scFvs were directly exposed to D-EC3 to select a new specific scFv with high affinity against CD133 using the ribosome display method. Then, the selected scFv was characterized by the indirect enzyme-linked immunosorbent assay (ELISA), immunocytochemistry (ICC), and in silico analyses included molecular docking and molecular dynamics simulations. Based on ELISA results, scFv 2 had a higher affinity for recombinant CD133, and it was considered for further analysis. Next, the immunocytochemistry and flow cytometry experiments confirmed that the obtained scFv could bind to the CD133 expressing HT-29 cells. Furthermore, the results of in silico analysis verified the ability of the scFv 2 antibody to bind and detect the D-EC3 antigen through key residues employed in antigen-antibody interactions. Our results suggest that ribosome display could be applied as a rapid and valid method for isolation of scFv with high affinity and specificity. Also, studying the mechanism of interaction between CD133's scFv and D-EC3 with two approaches of experimental and in silico analysis has potential importance for the design and development of antibody with improved properties.


Asunto(s)
Anticuerpos de Cadena Única , Animales , Ratones , Anticuerpos de Cadena Única/genética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ensayo de Inmunoadsorción Enzimática/métodos , Ribosomas , Biblioteca de Péptidos , Especificidad de Anticuerpos
2.
Daru ; 31(2): 155-171, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37597114

RESUMEN

PURPOSE: COVID-19 strangely kills some youth with no history of physical weakness, and in addition to the lungs, it may even directly harm other organs. Its complex mechanism has led to the loss of any significantly effective drug, and some patients with severe forms still die daily. Common methods for identifying disease mechanisms and drug design are often time-consuming or reductionist. Here, we use a novel holistic systems biology approach to predict its molecular mechanisms (in vitro), significant molecular relations with SARS, and repurpose drugs. METHODS: We have utilized its relative phylogenic similarity to SARS. Using the available omics data for SARS and the fewer data for COVID-19 to decode the mechanisms and their significant relations, We applied the Cytoscape analyzer, MCODE, STRING, and DAVID tools to predict the topographically crucial molecules, clusters, protein interaction mappings, and functional analysis. We also applied a novel approach to identify the significant relations between the two infections using the Fischer exact test for MCODE clusters. We then constructed and analyzed a drug-gene network using PharmGKB and DrugBank (retrieved using the dgidb). RESULTS: Some of the shared identified crucial molecules, BPs and pathways included Kaposi sarcoma-associated herpesvirus infection, Influenza A, and NOD-like receptor signaling pathways. Besides, our identified crucial molecules specific to host response against SARS-CoV-2 included FGA, BMP4, PRPF40A, and IFI16. CONCLUSION: We also introduced seven new repurposed candidate drugs based on the drug-gene network analysis for the identified crucial molecules. Therefore, we suggest that our newly recommended repurposed drugs be further investigated in Vitro and in Vivo against COVID-19.


Asunto(s)
COVID-19 , Humanos , Adolescente , SARS-CoV-2 , Biología de Sistemas , Transducción de Señal , Diseño de Fármacos , Antivirales/farmacología , Antivirales/uso terapéutico
3.
Curr Mol Med ; 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37594115

RESUMEN

The application of monoclonal antibodies and antibody fragments with the advent of recombinant antibody technology has made notable progress in clinical trials to provide a regulated drug release and extra targeting to the special conditions in the function site. Modification of antibodies has facilitated using mAbs and antibody fragments in numerous models of therapeutic and detection utilizations, such as stimuli-responsive systems. Antibodies and antibody derivatives conjugated with diverse stimuli-responsive materials have been constructed for drug delivery in response to a wide range of endogenous (electric, magnetic, light, radiation, ultrasound) and exogenous (temperature, pH, redox potential, enzymes) stimuli. In this report, we highlighted the recent progress on antibody-conjugated stimuli-responsive and dual/multi-responsive systems that affect modern medicine by improving a multitude of diagnostic and treatment strategies.

4.
J Proteomics ; 280: 104890, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-36966969

RESUMEN

This study employed systems biology and high-throughput technologies to analyze complex molecular components of MS pathophysiology, combining data from multiple omics sources to identify potential biomarkers and propose therapeutic targets and repurposed drugs for MS treatment. This study analyzed GEO microarray datasets and MS proteomics data using geWorkbench, CTD, and COREMINE to identify differentially expressed genes associated with MS disease. Protein-protein interaction networks were constructed using Cytoscape and its plugins, and functional enrichment analysis was performed to identify crucial molecules. A drug-gene interaction network was also created using DGIdb to propose medications. This study identified 592 differentially expressed genes (DEGs) associated with MS disease using GEO, proteomics, and text-mining datasets. 37 DEGs were found to be important by topographical network studies, and 6 were identified as the most significant for MS pathophysiology. Additionally, we proposed six drugs that target these key genes. Crucial molecules identified in this study were dysregulated in MS and likely play a key role in the disease mechanism, warranting further research. Additionally, we proposed repurposing certain FDA-approved drugs for MS treatment. Our in silico results were supported by previous experimental research on some of the target genes and drugs. SIGNIFICANCE: As the long-lasting investigations continue to discover new pathological territories in neurodegeneration, here we apply a systems biology approach to determine multiple sclerosis's molecular and pathophysiological origin and identify multiple sclerosis crucial genes that contribute to candidating new biomarkers and proposing new medications.


Asunto(s)
Esclerosis Múltiple , Biología de Sistemas , Humanos , Perfilación de la Expresión Génica/métodos , Reposicionamiento de Medicamentos , Biología Computacional/métodos , Biomarcadores
5.
Int J Prev Med ; 13: 133, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452468

RESUMEN

Background: These days, silver nanoparticles (Ag NPs) have been given considerable attention and applied in medical technology due to their great antimicrobial and antioxidant features. In the present study, we aimed to synthesize Ag NPs through the reduction of silver nitrate in the presence of Vitex agnus castus L fruit extract. Methods: After collecting fruits, their extract was prepared and added to Ag NO3 to produce Ag NPs. The effect of different parameters like AgNO3 concentration (0.5, 1, 3, and 5 mM), sunlight exposure, and sunlight irradiation time (10, 20, 30, and 40 min) was investigated in the synthesis of Ag NPs. The features of Ag NPs were characterized using UV-visible spectroscopy, scanning electron microscope (SEM), X-ray diffraction (XRD) analysis, and dynamic light scattering analysis. Moreover, antimicrobial function of Ag NPs was evaluated using Escherichia coli and Bacillus cereus bacteria species and minimal inhibitory concentration (MIC) of Ag NPs against these two pathogens was measured. Results: The results showed that the synthesized nanoparticles had a spherical shape and the range size of 30-60 nm. For the first time, the antimicrobial activity of synthesized Ag NPs of Vitex agnus castus L fruit extract was shown. Conclusions: It can be stated that the biosynthesis of Ag NPs using fruit extract of this plant is an environmentally friendly, economic and harmless method without any use of poisonous substances and no side effects. These Ag NPs can be considered as suitable antibacterial agents and replacements for antibiotics.

7.
Cell Reprogram ; 24(1): 26-37, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35100036

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was primarily noted as a respiratory pathogen, but later clinical reports highlighted its extrapulmonary effects particularly on the gastrointestinal (GI) tract. The aim of the current study was the prediction of crucial genes associated with the regulatory network motifs, probably responsible for the SARS-CoV-2 effects on the GI tract. The data were obtained from a published study on the effect of SARS-CoV-2 on the Caco-2 (colon carcinoma) cell line. We used transcription factors-microRNA-gene interaction databases to find the key regulatory molecules, then analyzed the data using the FANMOD software for detection of the crucial regulatory motifs. Cytoscape software was then used to construct and analyze the regulatory network of these motifs and identify their crucial genes. Finally, GEPIA2 (Gene Expression Profiling Interactive Analysis 2) and UALCAN datasets were used to evaluate the possible relationship between crucial genes and colon cancer development. Using bioinformatics tools, we demonstrated one 3edge feed-forward loop motifs and recognized 10 crucial genes in relationship with Caco-2 cell infected by SARS-CoV-2, including SP1, TSC22D2, POU2F1, REST, NFIC, CHD7, E2F1, CEBPA, TCF7L2, and TSC22D1. The box plot analysis indicated the significant overexpression of CEBPA in colon cancer compared to normal colon tissues, while it was in contrast with the results of stage plot. However, the overall survival analysis indicated that high expression of CEBPA has positive effect on colon cancer patient survivability, verifying the results of CEBPA stage plot. We predict that the SARS-CoV-2 GI infections may cause a serious risk in colon cancer patients. However, further experimental studies are required.


Asunto(s)
COVID-19 , MicroARNs , Células CACO-2 , Proteínas de Unión al ADN , Perfilación de la Expresión Génica , Humanos , SARS-CoV-2 , Factores de Transcripción
8.
Curr Pharm Biotechnol ; 23(8): 1061-1071, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34375187

RESUMEN

BACKGROUND AND AIMS: Antibody-based therapeutics have been shown to be promising for the treatment of colorectal cancer patients. However, the size and long-circulating half-lives of antibodies can limit their reproducible manufacture in clinical studies. Consequently, in novel therapeutic approaches, conventional antibodies are minimized and engineered to produce fragments like Fab, scFv, nanobody, bifunctional antibody, bispecific antibody, minibody, and diabody to preserve their high affinity and specificity to target pharmaceutical nanoparticle conjugates. This systematic review for the first time aimed to elucidate the role of various antibody fragments in colorectal cancer treatment. METHODS: A systematic literature search in the web of sciences, PubMed, Scopus, Google Scholar, and ProQuest was conducted. Reference lists of the articles were reviewed to identify the relevant papers. The full-text search included articles published in English during 19902021. RESULTS: Most of the 53 included studies were conducted in vitro and in most conducted studies singlechain antibodies were among the most used antibody fragments. Most antibodies targeted CEA in the treatment of colorectal cancer. Moreover, a large number of studies observed apoptosis induction and tumor growth inhibition. In addition, few studies implicated the role of the innate immune system as an indirect mechanism of tumor growth by enhancing NK-cell killing. CONCLUSION: Antibody-based therapy was demonstrated to be of great promise in the treatment of colorectal cancer rather than common treatments such as radiotherapy, chemotherapy, and surgical operations. This type of specified cancer treatment can also induce the activation of the innate and specific immune systems to eradicate tumor cells.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias Colorrectales , Nanopartículas , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Antígenos , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Fragmentos de Inmunoglobulinas , Células Asesinas Naturales
9.
Biomed Pharmacother ; 145: 112265, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34749054

RESUMEN

Advances in high-throughput sequencing over the past decades have led to the identification of thousands of non-coding RNAs (ncRNAs), which play a major role in regulating gene expression. One emerging class of ncRNAs is the natural antisense transcripts (NATs), the RNA molecules transcribed from the opposite strand of a protein-coding gene locus. NATs are known to concordantly and discordantly regulate gene expression in both cis and trans manners at the transcriptional, post-transcriptional, translational, and epigenetic levels. Aberrant expression of NATs can therefore cause dysregulation in many biological pathways and has been observed in many genetic diseases. This review outlines the involvements and mechanisms of NATs in the pathogenesis of various diseases, with a special emphasis on neurodegenerative diseases and cancer. We also summarize recent findings on NAT knockdown and/or overexpression experiments and discuss the potential of NATs as promising targets for future gene therapies.


Asunto(s)
Neoplasias/genética , Enfermedades Neurodegenerativas/genética , ARN no Traducido/genética , Animales , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias/patología , Enfermedades Neurodegenerativas/fisiopatología , ARN sin Sentido/genética , Transcripción Genética/genética
10.
Iran J Pharm Res ; 20(4): 80-91, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35194430

RESUMEN

The selection of the appropriate fragment of the cell surface receptors as an antigen is significant for the production of antibodies. CD133, as a suitable biomarker candidate in the cancer stem cells (CSCs), is a glycosylated protein. The antibodies used for analyzing it recognize glycosylated epitopes of CD133. Since the glycosylated motifs have a dynamic nature over the lifetime of a protein, they limit the detection of CD133. In this study, to access a specific antibody against the antigenic, accessible, and non-glycosylated fragment of the native CD133, we performed an in-silico analysis. Then, we expressed the third domain (D-EC3) (serine641-leucine710) in E. coli BL21 (DE3), then the purified recombinant antigen immunized BALB/c mice. Finally, the dignity of an epitope of pure recombinant antigen has been approved by the interactions of antibody and antigen with the use of mice immunized sera via ELISA and flow cytometry experimentation. The results showed that the selected non-glycosylated fragment can compete well with the commercial antibody against the glycosylated epitopes to identify the native cell surface markers. The results can be considered for diagnosis and target therapy development of CD133+ cancer cells.

11.
Curr Pharm Biotechnol ; 22(1): 123-135, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-31987019

RESUMEN

Peptides are considered to be appropriate tools in various biological fields. They can be primarily used for the rational design of bioactive molecules. They can act as ligands in the development of targeted therapeutics as well as diagnostics, can be used in the design of vaccines or can be employed in agriculture. Peptides can be classified in two broad structural classes: linear and cyclic peptides. Monocyclic peptides are a class of polypeptides with one macrocyclic ring that bears advantages, such as more selective binding and uptake by the target receptor, as well as higher potency and stability compared to linear types. This paper provides an overview of the categories, synthesis methods and various applications of cyclic peptides. The various applications of cyclic peptides include their use as pro-apoptotic and anti-microbial agents, their application as targeting ligands in drug delivery and diagnostic agents, as well as agricultural and therapeutics applications that are elaborated and discussed in this paper.


Asunto(s)
Antiinfecciosos/síntesis química , Antineoplásicos/síntesis química , Biblioteca de Péptidos , Péptidos Cíclicos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Ciclización , Sistemas de Liberación de Medicamentos/métodos , Tecnología Química Verde , Humanos , Ligandos , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Hidrolisados de Proteína/síntesis química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacología , Técnicas de Síntesis en Fase Sólida
12.
Life Sci ; 265: 118791, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33220288

RESUMEN

Colorectal cancer (CRC) is the fourth most common cause of cancer and mortality worldwide and is the third most common cancer in men and women. Surgery, radiotherapy, and chemotherapy are conventionally used for the treatment of colorectal cancer. However, these methods are associated with various side effects on normal cells. Thus, new studies are moving towards more effective and non-invasive methods for treatment of colorectal cancer. Targeted therapy of CRC is a promising new approach to enhance the efficiency and decrease the toxicity of the treatment. In targeted therapy of CRC, antibody fragments can directly inhibit tumor cell growth and proliferation. They also can act as an ideal carrier for targeted delivery of anticancer drugs. In the present study, the structure and function of different formats of antibody fragments, immune-targeted therapy of CRC using antibody fragments will be discussed.


Asunto(s)
Anticuerpos Antineoplásicos/administración & dosificación , Anticuerpos Antineoplásicos/inmunología , Antineoplásicos/administración & dosificación , Antineoplásicos/inmunología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/inmunología , Animales , Biomarcadores de Tumor/inmunología , Desarrollo de Medicamentos/tendencias , Humanos , Inmunoterapia/métodos , Inmunoterapia/tendencias
13.
Pharm Res ; 37(10): 196, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32944844

RESUMEN

PURPOSE: Hypoxia-inducible factor (HIF) is one of the critical components of the tumor microenvironment that is involved in tumor development. HIF-1α functionally and physically interacts with CDK1, 2, and 5 and stimulates the cell cycle progression and Cyclin-Dependent Kinase (CDK) expression. Therefore, hypoxic tumor microenvironment and CDK overexpression lead to increased cell cycle progression and tumor expansion. Therefore, we decided to suppress cancer cell expansion by blocking HIF-1α and CDK molecules. METHODS: In the present study, we used the carboxylated graphene oxide (CGO) conjugated with trimethyl chitosan (TMC) and hyaluronate (HA) nanoparticles (NPs) loaded with HIF-1α-siRNA and Dinaciclib, the CDK inhibitor, for silencing HIF-1α and blockade of CDKs in CD44-expressing cancer cells and evaluated the impact of combination therapy on proliferation, metastasis, apoptosis, and tumor growth. RESULTS: The results indicated that the manufactured NPs had conceivable physicochemical properties, high cellular uptake, and low toxicity. Moreover, combination therapy of cancer cells using CGO-TMC-HA NPs loaded with HIF-1α siRNA and Dinaciclib (SCH 727965) significantly suppressed the CDKs/HIF-1α and consequently, decreased the proliferation, migration, angiogenesis, and colony formation in tumor cells. CONCLUSIONS: These results indicate the ability of CGO-TMC-HA NPs for dual drug/gene delivery in cancer treatment. Furthermore, the simultaneous inhibition of CDKs/HIF-1α can be considered as a novel anti-cancer treatment strategy; however, further research is needed to confirm this treatment in vivo. Graphical Abstract The suppression of HIF-1α and CDKs inhibits cancer growth. HIF-1α is overexpressed by the cells present in the tumor microenvironment. The hypoxic environment elevates mitochondrial ROS production and increases p38 MAP kinase, JAK/STAT, ERK, JNK, and Akt/PI3K signaling, resulting in cyclin accumulation and aberrant cell cycle progression. Furthermore, the overexpression of HIF-1α/CDK results in increased expression of genes such as BCL2, Bcl-xl, Ki-67, TGFß, VEGF, FGF, MMP2, MMP9, and, HIF-1α and consequently raise the survival, proliferation, angiogenesis, metastasis, and invasion of tumor cells. In conclusion, HIF-1α-siRNA/Dinaciclib-loaded CGO-TMC-HA NPs can inhibit the tumor expansion by blockage of CDKs and HIF-1α (JAK: Janus kinase, STAT: Signal transducer and activator of transcription, MAPK: mitogen-activated protein kinase, ERK: extracellular signal-regulated kinase, JNK: c-Jun N-terminal kinase, PI3K: phosphatidylinositol 3-kinase).


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neoplasias Experimentales/terapia , Compuestos de Piridinio/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacocinética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Quitosano/química , Óxidos N-Cíclicos , Grafito/química , Ácido Hialurónico/química , Indolizinas , Ratones , Nanopartículas/química , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Compuestos de Piridinio/química , Compuestos de Piridinio/farmacocinética , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacocinética
14.
J Control Release ; 326: 63-74, 2020 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-32580042

RESUMEN

The immunosuppressive state of the tumor microenvironment diminishes the efficacy of dendritic cell (DC)-based cancer immunotherapy. Inhibitory immune checkpoint molecules expressed on tumor-infiltrating T lymphocytes, such as cytotoxic T-lymphocyte antigen 4 (CTLA-4) molecules are one of the main barriers in priming T cells by DCs. Therefore, it seems that blockade of such molecules facilitates the T cells activation by the DC vaccine. In this study, we intended to suppress the expression of CTLA-4 molecule on tumor-infiltrating T cells by siRNA-loaded chitosan-lactate (CL) nanoparticles to facilitate priming anti- tumor T cells by tumor lysate-loaded DC vaccine. Nanoparticles (NPs) have also provided an opportunity for specific drug delivery into the tumor site. CL NPs exhibited favorable physicochemical characteristics (size about 75 nm, polydispersive index<0.2, and a zeta potential about 14), which were associated with a high transfection rate and low toxicity. Moreover, the administration of anti-CTLA-4 siRNA-loaded NPs into CT26 and 4 T1 tumor -bearing mice led to the downregulation of CTLA-4 on tumor -infiltrating T cells, which was associated with tumor regression and increased mice survival. Moreover, while the treatment of tumor -bearing mice with DC vaccine had mild therapeutic outcomes, its combination with siRNA-loaded NPs may exhibit synergistic anti- tumor effects. This possible synergistic ameliorating effect is achieved through the reduction of immunosuppressive cells, the improved cytotoxicity of T lymphocytes, decreased inhibitory and increased inflammatory cytokines, and reduced angiogenesis and metastasis processes. These results indicate that the silencing of CTLA-4 can potentiate the T cell priming capacity of the DC vaccine, proposing a practical anti-cancer therapeutic approach.


Asunto(s)
Antígeno CTLA-4/antagonistas & inhibidores , Vacunas contra el Cáncer , Células Dendríticas , Inmunoterapia , Neoplasias/terapia , Animales , Línea Celular Tumoral , Ratones
15.
J Cell Physiol ; 235(12): 10068-10080, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32488862

RESUMEN

Inhibitory immune checkpoint (ICP) molecules are important immunosuppressive factors in a tumor microenvironment (TME). They can robustly suppress T-cell-mediated antitumor immune responses leading to cancer progression. Among the checkpoint molecules, cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) is one of the critical inhibitors of anticancer T-cell responses. Besides, the expression of adenosine receptor (A2AR) on tumor-infiltrating T cells potently reduces their function. We hypothesized that concomitant silencing of these molecules in T cells might lead to enhanced antitumor responses. To examine this assumption, we purified T cells from the tumor, spleen, and local lymph nodes of CT26 colon cancer-bearing mice and suppressed the expression of A2AR and CTLA-4 using the small interfering RNA (siRNA)-loaded polyethylene glycol-chitosan-alginate (PCA) nanoparticles. The appropriate physicochemical properties of the produced nanoparticles (NPs; size of 72 nm, polydispersive index [PDI] < 0.2, and zeta potential of 11 mV) resulted in their high efficiency in transfection and suppression of target gene expression. Following the silencing of checkpoint molecules, various T-cell functions, including proliferation, apoptosis, cytokine secretion, differentiation, and cytotoxicity were analyzed, ex vivo. The results showed that the generated nanoparticles had optimal physicochemical characteristics and significantly suppressed the expression of target molecules in T cells. Moreover, a concomitant blockade of A2AR and CTLA-4 in T cells could synergistically enhance antitumor responses through the downregulation of PKA, SHP2, and PP2Aα signaling pathways. Therefore, this combination therapy can be considered as a novel promising anticancer therapeutic strategy, which should be further investigated in subsequent studies.


Asunto(s)
Antígeno CTLA-4/genética , Neoplasias del Colon/terapia , Nanopartículas/química , Receptor de Adenosina A2A/genética , Alginatos/química , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Antígeno CTLA-4/antagonistas & inhibidores , Línea Celular Tumoral , Quitosano/química , Neoplasias del Colon/genética , Neoplasias del Colon/inmunología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Polietilenglicoles/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Microambiente Tumoral/efectos de los fármacos
16.
Nanomedicine ; 29: 102240, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32553948

RESUMEN

Overexpression of adenosine in the tumor region leads to suppression of various immune cells, particularly T cells through ligation with adenosine 2a receptor (A2aR). In this study, we intended to increase the efficacy of tumor lysate-loaded DC vaccine by silencing the expression of A2aR on T cells through the application of A2aR-specific siRNA-loaded PEG-chitosan-lactate (PCL) nanoparticles (NPs) in the 4T1 breast tumor-bearing mice. Combination therapy by DC vaccine and siRNA-loaded NPs markedly induced tumor regression and increased survival time of mice. These ameliorative effects were partly via downregulation of immunosuppressive cells, increased function of cytotoxic T lymphocytes, and induction of immune-stimulatory cytokines. Moreover, combination therapy could markedly suppress angiogenesis and metastasis processes. These results imply the efficacy of novel combination therapy for the treatment of breast cancer by using A2aR siRNA-loaded NPs and DC vaccine which can be translated into the initial phase of clinical trials in the near future.


Asunto(s)
Neoplasias de la Mama/terapia , Neoplasias Mamarias Animales/terapia , Nanopartículas/química , Receptor de Adenosina A2A/genética , Antagonistas del Receptor de Adenosina A2/química , Antagonistas del Receptor de Adenosina A2/farmacología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/farmacología , Línea Celular Tumoral , Quitosano/química , Quitosano/farmacología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inmunoterapia , Ácido Láctico/química , Ácido Láctico/farmacología , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/patología , Ratones , Polietilenglicoles/química , Polietilenglicoles/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...